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Non-Markov noise in barrier-fluctuation model
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Abstract. We investigate the thermally activated escape of a particle over a potential barrier
whose height fluctuates between two values. The barrier-switching process is constructed as a
semi-Markov alternating process: the times at which a change of the barrier state can occcur form
a general renewal process and the probability of leaving a state depends on the time the barrier
resides in the state before the jump. During the interjump interval, the barrier is fixed in one of
the two states and the crossing dynamics is described by a general (not necessarily exponential)
decay law. We give the general formulae describing the averaged escape dynamics, where the
averaging runs over all possible histories of the switching process. Using the above device of the
selective residence times, the recently discussed phenomenon of resonant activation (a minimal
averaged lifetime of the particle in the potential well) emerges also within the framework of the
conventional exponential escape dynamics.

1. Introduction

During the last decade the thermally activated escape of a particle from a potential well
[1, 2] has been studied in systems in which other (independent) dynamical processes are
present. One area of current interest is that of resonance activation [3–7].

Consider the problem of thermal escape out of a potential well, whose barrier height
switches at random between two values: low and high barrier, designated in the following by
the indexes ‘±’. The two basic ingredients of the combined dynamics are (i) the switching
process and (ii) the escape dynamics with the barrier fixed in one of the two possible states.
We assume the two ingredients are independent (thus, for example, the escape dynamics
with the fixed barrrier do not depend on the previous history of the switching process).

As for the switching mechanism, one usually implements the standard dichotomous
process: the residence times in the two individual states form a system of identical,
mutually independent and exponentially distributed random variables. More formally, the
barrier resides in the± state for a random time, described by the probability density
φ±(t) = γ exp(−γ t), where 1/γ is the mean interjump time. After a jump, the new
residence period begins and its length is statistically independent of the previous one.

Turning our attention to the escape dynamics, suppose the barrier is fixed in one of
the two possible states, say in the ‘+’-state. The particle is influenced by a potential
force (depending on the detailed form of the potential well) and by an additive Langevin
force (usually taken as the Gaussian white noise). Occasionally, the particle sustains a
strong enough impulse, surmounts the barrier and leaves the well. Consequently, as a
result of the complex diffusion dynamics, the particle’s probabilityg+(t) of being found
within the attractive basin of the potential minimum decays with time. The decay is usually
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approximated by an exponential [8],g+(t) = exp(−κ+t), with the decay rateκ+ being
proportional to the Boltzmann factor,κ± ∝ exp[−E+/(kBT )], andE+ denoting the height of
the barrier. Formally, we can introduce the random variableT+ representing ‘the lifetime of
the particle in the well’. Thereupon, all pertinent features of the complex diffusion problem
are pictured either by the above decay lawg+(t) or, equivalently, by the probability density
for the variableT+:

g+(t) = Prob{T+ > t} = 1− Prob{T+ 6 t} = 1−
∫ t

0
ψ+(t ′) dt ′. (1)

The above exponential decay law is compatible with the densityψ+(t) = κ+ exp(−κ+t).
However, as indicated by the exact analysis of the diffusion process in the static potential
well [9], the decay lawg+(t) need not be necessarily exponential and our designation
already anticipates the generalization.

After the separate presentation of the two ingredients, let us consider afixed (non-
random) sequence ofn jump events, say at times 0< s1 < s2 < · · · < sn < t , preceding
an arbitrary timet . We now invoke the following assumption: after an arbitrary jump, the
dynamics start anew with the decay lawg+(t) or g−(t) (corresponding to the new state of
the barrier) and with the initial condition given by the final value of the previous evolution.
Accordingly, the probability of remaining in the well at timet conditioned upon the above
realization of the switching process readsg±(t − sn) . . . g∓(s2 − s1)g±(s1). It follows a
continuous curve which in an alternating manner switches between the functionsg±(t),
matched together at the switching pointss1, . . . , sn. Averaging the area below the curve
over all possible histories of the switching process, one arrives at themean lifetimeτ . In
the following, we wish to focus on the calculation of this quantity.

As an example, consider the switching as being described by the standard Markov
dichotomous process (see the definition above) and take the decay laws in the two states of
the barrier to be exponential,g±(t) = exp(−κ±t). Then the resulting mean lifetime reads
[5]

τ(γ ) = 1

2

κ− + κ+ + 4γ

κ−κ+ + γ (κ− + κ+) . (2)

It decreases in a monotonic way from its maximum value in the static limit,τ(0) = τ̄ ,
τ̄ = (1/κ−+1/κ+)/2, down to the minimum value in the fast-switching limit,τ(∞) = 1/κ̄,
κ̄ = (κ− + κ+)/2 (i.e. the resulting rate is the average of the two individual rates).

The Markovian switching between twonon-exponentialdecay laws has been recently
analysed in [5]. One observes an interplay between the typical residence time 1/γ of the
barrier in its individual states and the most probable instant of the escape event (which does
not exist in the case of the exponential escape dynamics). As a result, the functionτ(γ )

develops aminimumat an ‘escape-optimized’ rateγres; the phenomenon was characterized
by Doering and Gadoua [3] as ‘resonant activation’. We wish to investigate an even more
general setting, where an arbitrary decay law combines with the semi-Markov switching
mechanism.

2. Semi-Markov switching mechanism

Let us first concentrate on the construction of the barrier-switching process. Assume the
barrier starts at times0 = 0 with probability ξ (0)j0

in the statej0(j0 = ±). It resides in
this state for a random time, described by the probability densityφj0(t). At the end of
this random interval, say at times1, the transitionj0→ j1 occurs with thetime-dependent
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probability pj1,j0(s1) (note that the barrier can also remain in its original state—the ‘test’
point s1 may be but also need not be the point of an actual switching). Then the whole
procedure starts anew. We now consider an arbitrary but fixed realization of the barrier-
switching process. Namely, we take then-point realization which runs through a fixed
sequence of states{jk}nk=0, switches between them at the fixed sequence of instants{sk}nk=1
and occurs at timet still in the statejn. Its probability density assumes the form

p(t, n; jn, . . . , j0; sn, . . . , s1) = fjn(t − sn)
n∏
k=1

pjk,jk−1(sk − sk−1)φjk−1(sk − sk−1). (3)

Herefjn(t − sn) = 1− ∫ t−sn0 φjn(t
′) dt ′ gives the probability of there being no test point in

the interval(sn, t〉 while the barrier resides in the statejn.
Let us designate asξ±(t) the overall probability of finding the barrier at timet in the state

‘±’. In order to evaluate this quantity, one has to ‘sum’ the probabilities of all realizations
which end at timet in the given state. The ‘summation’ actually means (i) the summation
over any possible succession of the two states during then test points, (ii) the integration
over any possible occurrence times of then test points and (iii) the summation over any
possible numbern of test points. The first part of the procedure is greatly facilitated if
we introduce a suitable(2× 2)-matrix. In the second step one benefits from the multiple-
convolution structure of the underlying formulae and one invokes the Laplace transform.
Finally, the summation over the number of test points emerges as a geometrical series. The
details of the calculation will be given elsewhere [10]; we focus on the final formula for
the Laplace transform of the occupation probabilities (herep±(t) = p∓,±(t)):

ξ̃±(z) = 1

z

π̃∓(z)+ zξ (0)±
z + π̃−(z)+ π̃+(z) π̃±(z) = zσ̃±(z)

1− φ̃±(z)
σ±(t) = p±(t)φ±(t). (4)

The preceding construction provides a large family of semi-Markov noises (we are
preserving the limited-memory property characteristic for the Markov processes and we
sacrifice the exponential form of the evolution operator for the occupation probabilities
[11, 12]). Generally, they are non-stationary and they evolve to some stationary state (see
the discussion). Their stationary two-time correlation function has a damped (generally non-
exponential) form. Some special cases are the alternating process (p±(t) = 1, i.e. the barrier
necessarily changes its state at any test point) and the Markov asymmetric dichotomous
noise (p±(t) = p± 6= 1, φ±(t) = γ± exp(−γ±t), the constant rates in the equations for
the occupation probabilities are thenp±γ±). In our model, the time-dependent probabilities
p±(t) have been included to describe the varying tendency to realize a true jump event after
some time has elapsed from the previous test point. For instance, if the lengths of the test
intervals are exponentially distributed (the Poisson process) and if the functionsp±(t) are
decreasing, the importance of long residence times is reduced: it is then less probable that
the test point at the end of a long interval will be selected to become the true switching
point. In the following, we denotep±(t) as theselection functions.

3. Averaged decay law

Combining both the switching and the decay process, we wish to calculate theaveraged
decay law u(t). Basically, the averaging procedure runs along the straightforward
prescription

u(t) =
∑

all realizations

(
probability for a
fixed realization

)
×
(

decay law
for this realization

)
. (5)
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The first factor is given in (3). The second, i.e. the corresponding conditioned decay law,
reads

u(t, n; jn, . . . , j0; sn, . . . , s1) = gjn(t − sn) . . . gj1(s2− s1)gj0(s1)ξ
(0)
j0
. (6)

At this point, one remark seems to be quite important. Assume the decay law is identical
in the both states of the barrier, sayg±(t) = g(t). Then the composed decay law (6)
yields u(t, n; jn, . . . , j0; sn, . . . , s1) = g(t)ξ

(0)
j0

if and only if g(t) is an exponential. The
observation is a direct consequence of the postulate we have stated in the introduction: any
test point breaks the coherence of the decay, even if it does not imply a change of the decay
law. After a test point, the decay process ‘loses memory’ and starts anew with the initial
condition dictated as the final value of the previous evolution.

Finally, ‘summation’ in (5) has been explained in the preceding section. The success of
the summation procedure rests again on the multiple-convolution structure of the emerging
formula. The final expression for the Laplace transform of the averaged evolution reads

ũ(z) = f̃
(g)
− [σ̃ (g)+ + (1− φ̃(g)+ )ξ (0)− ] + f̃ (g)+ [σ̃ (g)− + (1− φ̃(g)− )ξ (0)+ ]

(1− φ̃(g)− ) (1− φ̃(g)+ )+ σ̃ (g)− (1− φ̃(g)+ )+ σ̃ (g)+ (1− φ̃(g)− )
(7)

with σ (g)± (t) = p±(t)φ±(t)g±(t), φ(g)± (t) = φ±(t)g±(t) andf (g)± (t) = f±(t)g±(t).
The last formula constitutes our main general result. Frequently, one still introduces a

random variableT representing ‘the switching-averaged lifetime of the particle in the well’,
its densityψ(t) and its first moment, i.e. the mean switching-averaged lifetime. However,
the last quantity is directly related to the Laplace transform (7). In fact the probability that
the averaged escape process has not been realized up to timet readsu(t) = 1−∫ t0 ψ(t ′) dt ′

and hence

τ
def= 〈T〉 =

∫ ∞
0
t ψ(t)dt =

∫ ∞
0
u(t) dt = lim

z→0+
ũ(z). (8)

4. Discussion

Formulae (4) immediately yield the asymptotic probabilities

ξ
(∞)
± = lim

t→∞ ξ±(t) = lim
z→0+

zξ̃±(z) = π̃∓(0)
π̃−(0)+ π̃+(0) (9)

i.e. the quantities 1/π̃±(0) are nothing but the mean residence times in the individual states
of the barrier. Assuming that the selection functionsp±(t) are not time independent, the
mean time between the true jumps is always longer than the mean time between the test
points. The lengthening factor is [

∫∞
0 p±(t)φ±(t) dt ]−1. Choosing the Poisson system of test

points, i.e. takingφ±(t) = γ exp(−γ t), the asymptotic values (9) are entirely controlled by
the selection functions:ξ (∞)± = p̃∓(γ )/[p̃−(γ )+p̃+(γ )], i.e. they dependon the intensityγ .
Anticipating our calculation below, we exemplify the effect by the choicep−(t) = 2(t−σ−)
andp+(t) = 1−2(t − σ+) (2(x) is the unit-step function), giving

ξ
(∞)
− (γ ) = [1− exp(−γ σ+)]/[1− exp(−γ σ+)+ exp(−γ σ−)].

Although the test points are generated at mean spacing 1/γ , the functionp−(t) ‘selects’ only
the intervals longer thanσ− to be followed by the true transition ‘−’→‘+’. Similarly, after
an interval shorter thanσ+, the transition ‘+’→‘−’ will be definitely realized. Altogether,
by increasing the intensityγ , i.e. decreasing the mean time between the test points, the state
‘−’ acquires preference and the asymptotic valueξ

(∞)
− (γ ) increases up to unity.



Letter to the Editor L311

Focusing our attention on the barrier-fluctuation problem, the calculation in [5] assumes
p±(t) = 1, φ±(t) = γ exp(−γ t) and a general form ofψ±(t). Note the misprints in the
central formula (3) in [5] which should read

ũ(z) = 1

2

z′[1− ψ̃−(z′)ψ̃+(z′)] + (z′ + 2γ )[1− ψ̃−(z′)][1 − ψ̃+(z′)]
z′2− γ 2[1− ψ̃−(z′)][1 − ψ̃+(z′)]

(10)

with z′ = z + γ . Note that even if the escape dynamics is the same in both states of the
barrier, i.e.g±(t) = g(t), the averaged decay lawis not given by the functiong(t). The
conclusion is again a consequence of the above assumption concerning the composed decay.

Figure 1. The mean lifetimeτ(γ ) reduced to its static valuēτ against the intensityγ of the
Poisson process. The escape dynamics is exponential with the parametersκ±. The selection
functions arep−(t) = 2(t − σ−) andp+(t) = 1−2(t − σ+), and the calculation is based on
equation (12). The parameters used are:κ− = 1, κ+ = 10, σ− = 0.1, σ+ = 0.1 (full curve);
andκ− = 10, κ+ = 1, σ− = 0.001,σ+ = 0.001 (broken curve).

In contrast to the setting in [5], we now consider the interplay between the exponential
decay law and the semi-Markov switching mechanism. We assumeg±(t) = exp(−κ±t),
calculate the mean evolution (7) and carry out the limit in equation (8). The result reads

τ = κ−ξ
(0)
+ + κ+ξ (0)− + π̃−(κ−)+ π̃+(κ+)
κ−κ+ + κ−π̃+(κ+)+ κ+π̃−(κ−) . (11)

The mean lifetime depends on the initial conditions for the noise. The escape rates are
combined with the switching mechanism through the effective ratesπ̃±(z). If, however,
κ± = κ, then of courseu(t) = exp(−κt) andτ = 1/κ, whatever the switching mechanism.
In order to particularize the effect of the selection functions, let us again implement the
Poisson system of test points and the symmetric initial conditionsξ

(0)
± = 1/2. Equation (11)

then implies

τ(γ ) = 1

2

κ− + κ+ + 2γ [(γ + κ−)p̃−(γ + κ−)+ (γ + κ+)p̃+(γ + κ+)]
κ−κ+ + γ [κ+(γ + κ−)p̃−(γ + κ−)+ κ−(γ + κ+)p̃+(γ + κ+)] . (12)

The static limit always givesτ(0) = (1/κ− + 1/κ+)/2. However, in the high-intensity
limit, the lifetime depends on the zero-time values of the selection functions:τ(∞) =
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[p−(0)+p+(0)]/[κ+p−(0)+κ−p+(0)], i.e. it can be considerably different from the standard
value 2/(κ− + κ+), valid for p±(t) = 1. Moreover, for a specific form of the selection
functions, the functionτ(γ ) can reveal both a minimum and a maximum. This feature is
exemplified in figure 1 by choosing again the above unit-step selection functions. Having
sufficiently high intensity, the ‘−’-state has preference. Increasingγ then causes either
an increase (full curve) or decrease (broken curve) of the mean lifetime, depending on the
mutual relation between the ratesκ±.

In order to give a physical meaning to the above construction, one has to consider a
microscopic origin of the noise. Assume the test points are generated by a completely
independent stationary source, whereas the selection mechanism is an intrinsic element of a
system. For instance, the rateγ is defined by the tunnelling frequency of a host molecule
which stimulates the jumps of the barrier height for a neighbouring impurity unit. The actual
realization of the jump also depends on the coupling between the impurity and a phonon
system. The selection mechanism can be attributed to the phonon-induced localization
following every jump of the barrier. Having this picture in mind, a slow change of the
temperature induces a slow modification of the tunnelling frequency of the host molecule
and hence the spacing between the test point also changes. Our analysis then predicts a
slow change of the mean lifetime describing the impurity unit.

In conclusion, coupling of the decay dynamics with the random switching of the barrier
height produces a wide variety of behaviour. The new features of the switching process
substantially influence the averaged decay.
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